Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1299: 342434, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499420

RESUMO

BACKGROUND: Cancer as a leading cause of premature death worldwide has become a major threat to human health due to the high incidence and mortality. Monitoring tumor markers are reliable and significantly important for early detection of cancers. In complex biological systems, it is of great urgency but still remains challenging to conceive a fluorescent probe with multiple tumor markers detection property. Hydrogen sulfide (H2S) and pH are two target biomarkers for diagnosis of early cancer. The preparation of a novel probe with H2S and pH dual detection functions is highly anticipated. RESULTS: Herein, a novel sequential detection probe HTPQ-HS for H2S and pH has been developed. In this system, HPQ (2-(2 -hydroxyphenyl)-4(3H)-quinazolinone) structure combined with triphenylamine is applied as the fluorophore, and 2, 4-dinitrophenylsulfonyl group is used as the recognition group. In the presence of H2S, HTPQ-HS is transformed into product HTPQ-OH which shows fluorescence enhancement (29-fold) at 525 nm in less than 4 min and further displays repeatable acid-base responsive ability. HTPQ-HS is able to sequentially response to H2S and pH in living cells and does not react directly with pH. Owing to the low cytotoxicity, HTPQ-HS is able to detect exogenous and endogenous H2S in colon cancer cells and mice, monitor H2S in inflammation model and in foodstuffs. As the environment changes from acidic to alkaline, the fluorescence intensity ratio (I470/I530) of product HTPQ-OH changes remarkably, illustrating the ratiometric fluorescent responsiveness to pH. SIGNIFICANCE AND NOVELTY: A multifunctional fluorescent probe HTPQ-HS for sequential detection of H2S and pH is synthesized. Probe HTPQ-OH realizes the monitoring of dynamic changes in intracellular pH and displays prospective application in security printing. We expect that our work could offer an important guidance on the development of multifunctional fluorescent probes for visualizing H2S and pH in biology and environment.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Animais , Camundongos , Corantes Fluorescentes/química , Sulfeto de Hidrogênio/química , Células HeLa , Concentração de Íons de Hidrogênio , Biomarcadores Tumorais
2.
Nano Lett ; 24(9): 2765-2772, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393855

RESUMO

Alloying lanthanide ions (Yb3+) into perovskite quantum dots (Yb3+:CsPb(Cl1-xBrx)3) is an effective method to achieve efficient near-infrared (NIR) luminescence (>950 nm). Increasing the Yb3+ alloying ratio in the perovskite matrix enhances the luminescence intensity of Yb3+ emission at 990 nm. However, high Yb3+ alloying (>15%) results in vacancy-induced inferior material stability. In this work, we developed a polarity-mediated antisolvent manipulation strategy to resolve the incompatibility between a high Yb3+ alloying ratio and inferior stability of Yb3+:CsPb(Cl1-xBrx)3. Precise control of solution polarity enables increased uniformity of the perovskite matrix with fewer trap densities. Employing this strategy, we obtain Yb3+:CsPb(Cl1-xBrx)3 with the highest Yb3+ alloying ratio of 30.2% and a 2-fold higher electroluminescence intensity at 990 nm. We lever the engineered Yb3+:CsPb(Cl1-xBrx)3 to fabricate NIR-LEDs, achieving a peak external quantum efficiency (EQE) of 8.5% at 990 nm: this represents the highest among perovskite NIR-LEDs with an emission wavelength above 950 nm.

3.
ACS Appl Mater Interfaces ; 15(41): 48452-48461, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37802499

RESUMO

Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.

4.
ACS Appl Mater Interfaces ; 15(15): 19300-19306, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014251

RESUMO

A comprehensive comparison of organic single crystals based on a single material but with different dimensions provides a unique approach to probe their carrier injection mechanism. In this report, both two-dimensional (2D) and microrod single crystals with the same crystalline structure of an identical thiopyran derivative, 7,14-dioctylnaphtho[2,1-f:6,5-f']bis(cyclopentane[b]thiopyran) (C8-SS), are grown on a glycerol surface with the space-confined method. Organic field-effect transistors (OFETs) based on the 2D C8-SS single crystal exhibit superior performance compared with those based on the microrod single crystal, particularly in their contact resistance (RC). It is demonstrated that the resistance of the crystal bulk in the contact region plays a key role in RC of the OFETs. Thus, among the 30 devices tested, the microrod OFETs typically appear contact-limited, whereas the 2D OFETs possess significantly reduced RC arising from the tiny thickness of the 2D single crystal. The 2D OFETs show high operational stability and high channel mobility up to 5.7 cm2/V·s. The elucidation of the contact behavior highlights the merits and great potential of 2D molecular single crystals in organic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...